PERFORMANCE ASSESSMENT OF ROCK ANCHORS #### **Session Leaders** - Ken Fishman, P.E.; Principal, McMahon and Mann Consulting Engineers, P.C., Buffalo, NY - Dan Czmola, P.E.; Principal Engineer, D'Appolonia, Monroeville, PA #### **Half-Cell Potential Test** #### **Photo of Half-Cell Potential Test** #### **Set-up for Polarization Current Test** ## Typical Measurement from Polarization Current Test #### **Photo of Polarization Current Test** #### **Schematic of Impact Echo Test** #### **Photo of Impact Echo Test** #### **Instrumentation Set Up** #### **Schematic of Ultrasonic Test** #### **Photo of Ultrasonic Test** #### **Ultrasonic Transducer (Bottom View)** #### **Decision Tree for Ground Hazard** #### Decision Tree for Vulnerability to Corrosion and Loss of Resistance ## Decision Tree for Condition Assessment and Service Life Evaluation ## Decision Tree for Condition Assessment and Service Life Evaluation #### Table 4-6: Corrosiveness of Soils | Corrosiveness | Resistivity
(ohm/cm) | рН | |-----------------|-------------------------|--------| | Normal | 2000 - 5000 | 5 – 10 | | Aggressive | 700 – 2000 | 5 – 10 | | Very Aggressive | < 700 | < 5 | ## Table 4-7: Recommended Parameters for Service-Life Prediction Model | Parameter | Normal | Aggressive | Very
Aggressive | |---------------|--------|------------|--------------------| | Κ (μm) | 35 | 50 | 340 | | n | 1.0 | 1.0 | 1.0 | #### Table 4-8: Recommended Action Plan Case 1: No Distress - Loss < 25% | Case | Conditions | Recommended Action Plan | |------|--|---| | | No distress observed with NDT | Replacement of existing | | | Service life prediction model | elements not recommended | | | estimates <25% loss of bar cross | If test results indicate grout does | | | section | not reach back of element plates, | | 1 | For strand elements, corrosion | grout void | | | assessment model indicates | Future monitoring | | | hydrogen embrittlement and | recommended at a selected | | | corrosion stress cracking not | monitoring interval based on | | | likely | anticipated service life | #### Table 4-8: Recommended Action Plan Case 2: No Distress - Loss > 25% | Case | Conditions | Recommended Action Plan | |------|--|--| | 2 | No distress observed with NDT The service life prediction model estimated > 25% loss of bar cross section For strand elements, corrosion assessment model indicates hydrogen embrittlement and corrosion stress cracking are likely | Verify results of NDT with invasive observations If verified, continue monitoring Reduction in testing frequency may be considered | #### Table 4-8: Recommended Action Plan Case 3: Distress - Loss < 25% | Case | Conditions | Recommended Action Plan | |------|--|--| | 3 | Distress observed with NDT Service life prediction model estimates < 25% loss of bar cross section For strand elements, corrosion assessment model indicates hydrogen embritlement and corrosion stress cracking are not likely | Apply acceptance criteria described in Standard Guide If existing condition is deteriorated below acceptance criteria, verify NDT with invasive observations If NDT results are confirmed, retrofit and increase testing frequency | ## Table 4-8: Recommended Action Plan Case 4: No Remaining Service Life | Case | Conditions | Recommended Action Plan | |------|---|-------------------------| | 4 | • Observations and service life prediction models are consistent with conclusion of no remaining service life | | #### CORROSION ISSUES FOR HIGH STRENGTH STEEL - Stress Corrosion Cracking - -Vulnerable at high prestress levels - Hydrogen Embrittlement - -Vulnerable at low Ph - Stray Current Corrosion - Microbacterial Induced Corrosion - —Some grease products may promote microbacterial activity in the presence of moisture ## SPECIAL MONITORING TECHNIQUES FOR STRAND-TYPE GROUND ANCHORS - Install Probe Holes - —Electrode placement and electrochemical testing - —Acoustic emission sensors to detect wire breaks - Instrument Tendons - —Load cells - —Strain gages for impact testing - **—**VETEK System - Periodic Lift-off Testing - Install Dummy Tendons For Inspection ### Questions?